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We derive the saddle-point equations for the order parameters of the Hopfield 
model in the case of replica symmetry without using the replica trick, but 
assuming that the Edwards-Anderson parameter is a self-averaging quantity. 
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1. I N T R O D U C T I O N  

The Hopfield model is one of the most widely used models of the theory 
of disordered systems. It is defined by the usual spin Hamiltonian Hu  (say, 
with the Ising spins St = __+ 1, i =  1 ..... N) with the interaction of the form 

P 

J o = N - '  ~ ~r (l.1) 

where ~;' are independent identically distributed random variables. In other 
words, the interaction is the sum o f p  modes ~u=  {r ..... ~ } .  

This model with N-independent p was proposed in refs. 11-13 as a 
simple model of disordered spin systems, spin glasses in particular. Later 
the same model was successfully used (8'9) as a model of associative 
memory,  where the random vectors ~J' with ~;' = ___I describe the learned 
memory patterns. 

It is evident that the model defined by (1.1) is a model of the mean- 
field type. This fact allows for the rather complete analysis of the model for 
finite p or for p~,~N (say p/N-- .O for N-- .  o016~). However, according to a 
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widely accepted point of view (see, e.g., refs. 2 and 14), the Hopfield model 
with a finite p does not reflect many important properties of spin glasses 
and neural networks and the more realistic model corresponds to a macro- 
scopicaily large number of patterns, i.e., p/N = ~ > 0 for p ~ or, N ~ ~ .  
In particular it is natural to expect that if ~>> 1 the Hopfield model is 
thermodynamically equivalent to the Sherrington-Kirkpatrick (SK) 
model in which {J~j} is a family of independent (except for the symmetry 
condition Jzj = Jj~) Gaussian random variables. 

Both models have been extensively studied in the physical literature 
and many interesting and important results obtained. However, the main 
technical tool of the majority of these findings is the so-called "replica 
trick," which was invented in order to overcome the fundamental technical 
difficulty of the theoretical physics of quenched disordered systems. 
Namely, since in these systems the self-averaging (s.a.) property (i.e., 
nonrandomness in the macroscopic limit) holds for the free energy 
fN = - ( f iN)-~  log ZN but not for the partition function ZN, the averaging 
procedure E{ ... } with respect to the random parameters (interactions J~, 
external fields h~, etc.) has to be applied tofN,  but not to ZN. The former 
procedure is as a rule very difficult to perform and the latter procedure is 
rather simple even if it is applied to Z~ for n = 1, 2 ..... The replica trick 
reduces the former procedure to the latter one by using the elementary 
identity In Z =  iim,, ~ o [ ( Z ' ~ -  1)/n] and a rather subtle continuation of the 
sequence E{Z~v},,=l.2.... to the continuously varying and tending to zero 
values of n. It is just the nonuniqueness of this limit t~6~ that disallows 
justifying the choice of the SK free energy. 

The replica trick, being a most popular and pragmatically rather 
efficient technical tool in the theoretical physics of disordered systems, is 
rather poorly understood mathematically. In ref. 4 it was shown that the 
simplest so-called "replica-symmetric" solution of the SK model is a 
rigorous consequence of the s.a. property of the spin-glass order parameter, 
known as the Edwards-Anderson parameter. Thus, at least for the part 
of the phase diagram of the SK model where the replica symmetry is 
unbroken, the replica-symmetric solution is the rigorous consequence of 
the s.a. property, which is easier to understand and which is valid in many 
models with a short-range interaction. On the other hand, for the part of 
the phase diagram of the SK model lying below the de Almeida-Thouless 
line, where the replica symmetry is broken, the rigorous result of ref. 4 is 
in agreement with the Parisi theory predicting the absence of the s.a. 
property of the Edwards-Anderson order parameter. 

The aim of this paper is to prove rigorously the analogous results for 
the Hopfield model. The replica-symmetric solution in this model was 
found by Amit et aL, ~1~ who derived the system of self-consistent equations 
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for the set of the order parameters of the model, known as the saddle-point 
equations. Our strategy is in essence the same as in ref. 4 and is based on 
the careful comparison of certain thermodynamic quantities corresponding 
to the systems of N -  1 and N spins. However, the technical side of our 
proofs in this paper is more complicated than in the case of the SK model. 
This is not too surprising since, as was mentioned above, the SK model 
can be regarded as the limiting case of the Hopfield modelJ ~7) 

The general idea is to define the "interpolating" Hamiltonian H(z, 0) 
of the system of N -  1 spins Sz ..... SN with certain parameters ~ and 0 such 
that for r = $1 and certain 0 it coincides with the Hamiltonian HN of the 
Hopfield model of N spins defined by (1.1) and for z = 0 it coincides with 
the Hopfield Hamiltonian HA,_ t of N - - 1  spins $2 ..... Ser Then we 
introduce the relative partition function 

Tr e-aH("~ 
u(z) = Tr e-/~H~O.Ol (1.2) 

and study its Taylor expansion with respect to r up to the second order. 
The fact that the coefficients of this Taylor expansion have a suitable form 
and are s.a. allows us to derive the equations for the order parameters 
q, r, m" which are identical to those of Amit et al. in the case of replica 
symmetry. We remark that we have to add more terms than the usual ones 
in the Hamiltonian (the el and e_, terms of Definition 1, Section 2) in order 
to prove the s.a. properties of certain quantities and the convergence to 
zero of the remainder of the Taylor expansion of u(r). 

The plan of the paper is the following. In Section 2 we give the main 
definitions and discuss them, state the main lemmas on the properties of 
s.a. and of the Taylor expansion of the function u(z), and, using these 
results, derive the saddle-point equations. In Section 3 we give the proofs 
of the lemmas. 

2. DERIVATION OF THE S A D D L E - P O I N T  EQUATIONS 

Let the patterns be defined as a set of p random vectors {~]', .... ~ } ,  
/t = 1 ..... p, whose components are all independent and identically dis- 
tributed with values ~,." = _+1 and zero mean. Let also 

t i k i = l , . . . , N  

be the set of all these variables and S i=  +1 be the neuronal activities 
( = spin variables). 
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D e f i n i t i o n  1 : 

1 N 

1 N 

- v@ E.=_ 

(2.1) 

D e f i n i t i o n  2: 

I P N N p 

= - - -  Z E r Z Z (2.2) 
Ho 2N.=l ,+ 1 i . j = l  i = l  l / = k +  I 

1 k N k N 

H(k)= 2N Z 2 ?",~"S.S. - - -  . , o j - . - , -  Z E r 
I t = l  i , j = l  1t=1 i=1 

H = Ho + H(k)  (2.3) 

where {h,}, {y"} are independent Gaussian random variables with zero 
mean and variance 1, E{ ... } is the expectation w.r.t. 3, {hi}, and {?"}, and 
( . )  is the expectation w.r.t, the finite-volume Gibbs distribution generated 
by H. 

H is the starting Hamiltonian for our analysis; it differs from the 
canonical form of the Hopfield model 11'2~ by some auxiliary fields given by 
the terms containing ~1, e2, d' (/~= 1 ..... k). These fields are introduced 
following the general strategy of statistical mechanics already applied in the 
case of the ferromagnetic Ising model in order to study the phase transition 
(more exactly, in order to find the spontaneous magnetization in the Ising 
model). The presence of these fields makes the canonical Gibbs averages 
different from zero for any finite N. Then, after the thermodynamic limit is 
done, we send, as in the Ising model, the intensivity of the auxiliary fields 
to zero and study the limiting equations. Moreover, let us note that the 
terms containing ~ ,  e2, and d' will be used below for proving the self- 
averaging property of r and m" in the limit N ~  ~ and for obtaining a 
suitable expression for the coefficient of the second-order term in the 
Taylor expansion of the interpolating function u(r) specified by (1.1). The 
e~ term is also used in order to find an upper bound for the remainder of 
the Taylor expansion, which vanishes as N ~  ~ .  This is clear from the 
proofs shown at the end of Section 3. 
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D e f i n i t i o n  3: 

1 P 
r = -  <t"> 

P lt=k+l 

1 ,v q=~,~,,..= <S,> 2 (2.4) 

1 N 

m" is known as the overlap with a given pattern configuration, q is the 
Edward-Anderson  parameter ,  and r is the parameter  which takes into 
account the influence of the patterns whose overlap vanishes in the limit 
N - *  oo. {t~ This corresponds also to the special splitting that we introduced 
in the Hamil tonian  (2.3) where the patterns which condense ]-i.e., (m~')2 > 0 
for N--* oo ] are separated from the ones which have a "collective" influence 
on the memoriza t ion  process as a Gauss ian  noise. We cannot  consider here 
the question of which measure the finite-N Gibbs distribution generates in 
the thermodynamic  limit, because it is an unsolvable problem due to the 
fact that the r andom couplings have no decrease proper ty  for large distance 
among the points. 

D e f i n i t i o n  4: 

1 P N U p 
It ~ l t  ' - - - -  Z Z *,r Y h,S,- 2 Z 

H ~  2Nj,=~+ t i.g=., ~=2 j,=k+ l 

1 k N k N 

9-~, t ~ ~, _ 
H'(k)= 2N ~. { ,{ ,S ,S ,  ~ g " X  {$'S, 

= i , j = 2  , u = l  i = 2  

Ht = H~ + H'(k) (2.5) 

k ,% p 

l*=l % ~ I t = k +  1 

H(r,  0) = H l -  w / ~ u ~ ,  ~]'O"t~' 

where 0 = { 1  ..... 1 ,01,0 2 , 0 3 , 0 4 ,1 ..... 1} and the number  of 1 before the 0 
variables is k; I will be the special configuration of 0 given by I = {1 ..... 
l, 1, I, 1, 1}; ( " ' > r  will be the expectation w.r.t, the Gibbs  measure 
generated by H(r ,  0). 

For  r = S t  and 0 =  1, H(z, 0 ) - h l r  coincides with the Hamil tonian 
(2.3). It is introduced in the spirit of the cavity method r as an inter- 
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polating Hamiltonian between the system with N - 1  spins and the one 
with N spins. The parameters 0 ~, 0 2, 0 3, 0 4 are introduced for the proof 
of Lemma 2.2 below: they will be used in the estimate of the remainder of 
the respective Taylor expansion and afterward will be set equal to 1 to 
reconstruct the Hamiltonian of the N neurons. In fact the term in (2.5) 
which multiplies z represents the interaction between the neuron located at 
the lattice site 1 with those of the N -  1 system. 

Definit ion 5: 

Tr e-IIH(r,I) 
u(~) = In 

Tr e -~H(~ 

The function u(r) is the object to be studied in this paper because it 
is the main tool which allows us to derive Eqs. (2.6)-(2.8) below for the 
order parameters of the model. 

Apart from the normalizing constant, exp[u(r ) ]  is the partition func- 
tion of the system of ($2 ..... SN) neurons with the external field introduced 
in (2.5). The key point of our method is to compute (S~)  by means of 
exp[u(r ) ]  and to obtain a simple expression for u(r) by using the Taylor 
formula of Lemma 2.2. 

D e f i n i t i o n  6. A random variable tp is self-averaging (s.a.) for 
N - - , ~  if 

2 

In this paper the limit N ~  c~ is done sending also p ~  ~ with 
-- p / N  fixed. ~ is known as the "capacity" of the network. 

Defini t ion 7 (free energy): 

f =  lim 1 N . . . .  - - N  In Tr e-~H 

Our result follows from two main lemmas: 

Lemma 2.1 : 

(a) m" is s.a. 

(b) If in some range of the parameters fl, ~ ,  e2, ~", a the parameter 
q is s.a., then also r is s.a. 

L e m m a  2.2. If in some range of the parameters fl, el, ez, e~', a the 
parameter q is s.a., then 

k 

u(r) = ~r(c~r) '/z v + fir ~ r + Ur21~2/2 + RN(r)  
i t =  1 
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where E{R~( r )}  ~ 0  as N ~  oo, 

1 P u=~ y~ ( ( : -  (:))2) 
/ 1 = 1  

and v is a Gaussian random variable with zero mean and variance 1. 

The proofs of these two iemmas are rather technical and we postpone 
them to the next section. Here we prove the main result, assuming that 
these lemmas are true. 

These lemmas allow us to start the derivation of the equations for m ~', 
r, and q. Lemma 2.1 is divided into two parts. The first one does not 
depend on the s.a. property of q: it will be shown in Section 3 by taking the 
derivative of the free energy w.r.t, e". The second part is interesting by itself 
and not only for its applications: it shows in fact that there is a hierarchy 
in the s.a. property:  once q is self-averaging, r is also s.a. In this way we get 
that the central limit theorem holds for the sum of random variables which 
appears as the first term in the formula for u(r) in Lemma 2.2. The main 
points to show in Section 3 are the proof  that U has the form given in 
Lemma 2.2 and that the remainder RN(r)  goes to zero in probability when 
N--+ oo. 

T h e o r e m  1. I f fo r f lE ( f lo ,  f l o + f ) , e l , e 2 ,  e"e (0 ,  f ) , c te (c t  o ,c to+6) ,  
the parameter q is s.a., then in the limits N - ,  oo, p - .  oo, p/N-* ~, e i --* 0, 
e2-* 0 taken in the prescribed order, we have 

[ ]} m ' = E  (2rt)t/2 ~ t a n h f l  (~r)l/2v+ ~, ( m " + e " ) ~ '  (2.6) 
p =  I 

q 
r - ( 2 . 7 )  

(1 _ f l  + flq)2 

[ . ]} q=E (2r0t/_, tanh2fl (ctr)J/2v+ ~ (m"+e")~ ~ (2.8) 
p =  I 

Remark. The order of the limits in Theorem 1 cannot be inter- 
changed because in the bound for ER~(z) we get a term e24o(1), N - *  oo. 

Derivation of Formula (2.6). Since m" is s.a. ( p =  1 ..... k), then for 
N--.  oo 

i = 1  
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The expression for (S~)  can be obtained from Definitions 4 and 5 and 
Lemma 2.2: 

e,,(t) + at,, _ e,,(-l) -/Jh, [ ,,, ] 
(Sl)=e,,(,)+tff,,+e.(_l)_t~T,,-tanh ~ (o~r)'/Zv+ ~ (m~'+e")~ '' (2.9) 

Since, as we will see in the proof of Lemma 2.2, v is obtained as a sum of 
i.i.d, random variables {r then the expectation over ~ implies an 
average w.r.t, v whenever this variable appears. Applying this argument to 
(2.9), we get formula (2.6). 

Derivation of Formula (2.8). According to (2.2)-(2.4) and the 
hypotheses of the theorem, 

q = E { N  ~ (Si )2}  + ~  2}+o(1),  
i = 1  

Inserting (2.9) in the last equation, we obtain (2.8). 

N--, oo 

Derivation of (2.7). Let us start from the study of the quantity U 
defined in Lemma 2.2 above: 

E 
I t  = I 1 I t  = 1 

Let ~ be a function only of the spins $2 . . . . .  S N. We use the identity 

(~oS,) 
(q~) +~.1 el"(t)+/~T't)- (~~  t.t e{t'(-l)-flhl} 

e{,,(l) +/ff,~ } +e{.(-l)-IO,,) 

where ( . )  + 1.1, ( ' )  - i,i were specified in Definition 4. According to this 
identity and (2.10), 

E 

----- ct + ~ E e{,,(l)+/if, ,  1 +e,U(_l)_lt~} 

Now, using Lemma 2.2 and the Griffith lemma on the convergence of the 
first derivatives of convex functions [note that u(r) is a convex function], 
one can obtain that in the limits N--. oo, p -~ 0% p/N ~ ~, ~L2 ~ 0 taken in 
the prescribed order, 
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+E~=,r e c} = ~ + E  [(ccr)'/2v+y-~='Ut'm"+Ufl]eC-[(ur)'/2v * 
eC + e -c  

, u = l  
(2.11) 

where 

[ ' ] C=# (~r)'P-v+ ~ (.,"+~")~' 
I t =  1 

Using the same arguments  and the identity 

<~> = 
e{ , . -  ~)- pT,,} el"~'~+~7',} + <~o>_,. I <~o> +,., 

e{,. J~+pT,,} +e{,.-,l-a7,,} 

we obtain 

E{~,~=, <,,,>2} 

= uq +-~ E <St > e{,,,,-+aT----~,[-+e--'~,,~_i---'a,,,} 

I t =  1 

and using (2.9), we have for e~.2 ~ 0 

l l =  I 

(2.12) 
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Now, subtracting (2.12) from (2.11), we find that 

U =  c~(l - q) + flU(1 --q)  

or 

~x(l - q )  
U 

1 - /~(1  - q )  

In order to derive Eq. (2.7) now it suffices to take into account that 

(2.13) 

1 P 

r = -  ~ ( t i ' )  2 
P/~=k+l 

1 ~ ( t , , )2__l  ~ {mU} 2 = - -  

cxN c( 
# = 1  t t = l  

l[ctq+flUq+E{((~r,'/2v+ Z m"r = - -  

O~ p =  I 

Therefore Eq. (2.6) yields 

~- Uq + I f dv e x p ( -  v2/2), ,1,2 
r = q + ~ c~ J (-~n)u,_- tr~/" v tanh C 

fl Uq + fir f f dv e x p ( -  v2/2) , (2~)1/2 cosh -2 C = q  + 

=q+-fl- Uq + flr(1-q) 

{m"} 2] 
/ ~ =  I 

Inserting the expression of U from (2.13) in this formula, one gets (2.7). 

3. PROOFS OF L E M M A S  2.1 A N D  2.2 

Everywhere in this section we will use the notation 

~ 

(AB)r o - ( ( A -  (A)~.o) B)r 

where ( ... )co was introduced in Definition 4. 
Before starting the proofs, we sketch the general strategy used in this 

section. The order of the lemmas is difficult to optimize and so we have 
chosen a scheme of proof which we want to explain before starting to go 
through it. 
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(a) The remainder Ru(z )  in Lemma 2.2 is decomposed into the sum 
of three terms: 

R = R, + 2R2 + R 3 

In Lemmas 3.2-3.4 we demonstrate that these terms go to zero as N--+ oo. 
The result of Lemma 3.1 is used in Lemmas 3.3 and 3.4 in order to bound 
R2 and R 3 by a quantity which goes to zero as N--+ m. Lemma 3.1 is 
shown using a formula obtained by integration by parts with respect to h~ 
as in ref. 4 and by starting from s.a. properties of the derivative of the free 
energy w.r.t, e2. Since Lemma 3.1 is used many times we put it at the 
beginning of this section. 

(b) The proof  of Lemma 2.2 is a based on Taylor expansion of u(r) 
and the s.a. property of r and ng'. We also use Lemma 3.5 in order to 
express the quanti ty U introduced in Lemma 2.2 in terms of the usual 
Gibbs measure ( - )  instead of the less comfortable one ( . ) r  

(c) The proof  of these last three facts is shifted to the end of 
Section 3. First we prove Lemma 3.5: the proof  of this iemma is reduced to 
the proof  of the s.a. of r, which is given at the end of the section. Also in 
this case we start from the derivative of  the free energy with respect to e2. 

Lemma 3.1�9 If q is s.a. and t~' are defined as in (2.1), then 

S(~)=_E ~. <i~'i'~)~.,-~0 (3.1) 
/ J , v =  1 

as N--+ oo and also 

1 P / t i , ,)2\ ; "~ 
E . , ,  

Proof. From ref. 4 we know that if q is s.a., then 

" U 

(3.2) 

as N--+ oo. Let us set Q u =  (,~,i,Si>o.,. Then for 

1 P 

/ 1 = 1  

we have, in view of  (2.1) and (3.1), 



1172 Pastur er  al. 

S(O)=E V - -  ;~',~, . . . . .  ~-~ N 2 "it"J,~i'-~i2 
1 i l . i 2 , J l . J 2  = 2 

x <~r <~r sj:>o.,} 

= E ~-i .Z. Ji,.j, Ji,.hQimQj,.j,. 
11.t2 

E 1 = {-~-TTrJQJQ} 

=E{-~TrJ'/2QJQJ l/2} 

1 
~<~__ E{ IIJl[ Tr QJQ} 

1 
~< ~ i  E{ tlJl]-" Tr Q-" } 

1 
~<const ~ E { T r  Q2} 

Here we have used the result of ref. 6, which implies that 

Prob { IIJl[ > ( 1 + x/~) 2 + e } ~< e / - M'3'"N'~"3 } (3.3) 

where M does not depend on e and N. Therefore everywhere below we will 
use the inequality IIJII ~< const. Now using (3.2), we get that 

S(0)--* 0, N--* oo (3.4) 
But 

S ( ( ) = E  min ~ ((t~'-c")(t';-c"))~,, 
t ' P  . I t ,  v = 1 

<.E Y <(q-<t;')o.,)(ri-<t~)o.,))~., 
l ~ . v =  I 

J'(1/N2) Z~, .... 1 (i]'i; exp[((Y,,  G't~/~)/x/~] ' 

(exp[(~ X,, ~t;'fl)/x/~] )2, )~"j 
E 

~<E{ N1--~- ,.,.=s (i~'/'i exp \ ~ / , o . ,  

(3.5) 
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Here we have used the Jensen inequality 

1 
- - ~ <  ( A - t ) o . i  
(A)o . ,  

for the derivation of the last expression. Now since ( . ) o , i  does not depend 
on {r we can average the r.h.s, of Eq. (3.5) over {r and then, using the 
property 

1 1 N 
-N~',, (t]')2 =-N ,. ~ 2 JqS, Sj <~ Ilgll (3.6) 

obtain that 

S(r <~ E _ ~" ( t t t  , ' , ,  .,.)o.,e2 16t~: lIJII 
g . v =  | 

~ E I / 2  { 1~ E p (t"  I o.I �9 i , , ) 2  }EI/2{I]jII2e321321lJII} 
la, V= 1 

~< S'/2(0).  const 

where we have used (3.3) to bound E~/'-{ [IJ[[ 2 e321#lIJII}. N o w  on the basis 
of (3.4) one can obtain (3.1). Lemma 3.1 is proved. 

Proof of Lemma 2.2. Using Definition 5, we get the following 
Taylor formula for u(r): 

u ( r )  = u ' ( 0 )  r + d~ u" ( ~ ) ( r  - ~) 

.t/=l I ll ~ k + l N / / ~  

+[~2 a~Ir-~) Y, --~-(t;'ri>~., 
I t . v= 1 

(3.7) 

By Definitions 4 and 5, (t] ')o.  j is independent of ~]' and one can apply the 
central limit theorem and Lemma 2.1 to the second sum in thr r.h.s, of this 
formula, getting for N--* oo a Gaussian random variable v with zero mean 
and variance: 

{( E ~ ~]' ( t ] ' )o. ,  --* ctr 
lt=k+l N//~ 

as N ~  

822/74/5-6-I5 
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In addition, by Definitions 1 and 3 due to the s.a. of m" 

1 ,u x//~(tl)o.l=mJ'+o(1), N-*oo, p = l  ..... k 

we obtain the first two terms in the expansion of Lemma 2.2 for u(z). 
Now we consider the last term in (3.7). We first study the sum with 

two different indexes: 

where 

p it v 

R =  ~. ~ '~ '  ( i ~ ' i ; ) ~ . , = R , + 2 R 2 + R 3  (3.8) 
N l~,V= l , p # v  

k r 1 6 2  . . . , ,  

R I =  E N ( t l t l ) c , ' l  
I t .v= l . t t # ' ;  

.(1 i, ,, p r  �9 . .  

R2 = ~'~ ff'~ T (t~'t'l)c.., 
p = l  v = k + l  

u v 

= i ; ) r  R3 Z N (t~' 
I t . v = k +  l , p ~ v  

L e m m a  3.2: 

lim E{IR,[}  = 0  
N ~ c r ~  

Proof." 

k 1 
E{'R'I} <'E {,,.,.__~I.,,~,.-N'(i~'i~)'.I } 

~E ~ ((i';)-'>~., 
,u 1 

= e  ,TN 

} 
k 2 zw i = 2  p = l  

-N< E 1/2 E 1/~ 
i 2 i = 2  j ~ = l  

k3/2 
<~82NI/2 

(y"~f):} 

(3.9) 
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Here we have used the Schwarz inequality and the formula 

E{ ),q~(y) } = E{ ~o'(?) } (3.10) 

which is valid for any Gauss ian  random variable with zero mean and 
variance one. Lemma  3.2 is proven. 

Lemma 3.3: 

lim E{IR21} = 0  
N ~ c ~  

ProoL By the Schwarz inequality we have 

..,=l ~[(i ' / i;)c. ,I  

} x E ~12 ,.= , ~ <(i;)2)C., + IR31 (3.11) 

But according to (3.9), the first factor in the r.h.s, of this inequality has zero 
limit as N ~  oo. In addition, according to (3.6) and (3.3), the sum in the 
second factor is bounded. Finally, as it will be shown in Lemma  3.4, we 
have that 

lim E{R~} =0 
N ~ o 3  

Combining these facts with (3.1), we obtain the lemma. 

Lemma 3.4: 

lim E{R3Z} = 0  

Proof." 

E{R]}  = E  ~ N'- \ , ' ,  ,c., (t]'"t]2)r 
/tl  ~ vl  .It2 ~ )'2 

= E  ... + 2 E  .-. + 2 E  ... 

- E { X , }  + 2 E { X z }  + 2 E { $ 3 }  

Let us consider the first sum in the r.h.s, of the last equality. The other 
sums can be estimated analogously. Since the Hamil tonian  is symmetric  
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w.r.t, the indices of the patterns p =  1 ..... p, we can consider the case 
/ z ~ = l + k ,  p 2 = 2 + k ,  p 3 = 3 + k ,  , u 4 = 4 + k  and multiply the term by a 
factor ( p - k ) ( p - k - 1 ) ( p - k - 2 ) ( p - k - 3 ) < < . N 4 o : .  Thus we have to 
estimate 

g{,~l}=E{N2~k+lpk+2yk+3 k+4 "k+ I~k+2 ( ik+3ik+4)  ~l ~l ~, ( t l  "1 )r I r (3.12) 

It is useful to introduce the function 

~1(0) "k+ l 'k+'~ " k + 3 i k + 4 )  = ( t t  tl - ) r  l r 

Then 

E{r162162 k+, ~, ~b(1) } 

{fO , k + 2 : k + 3 : k + 4  O'~k(O) } (3.13) =E dOl dOZ dO3 d04 r k+ ~l ,,1 ~l 001a02 ~03 004 

All the terms in the r.h.s, of (3.13) which have at least one of the variables 
0i= O, i =  1,..., 4, give a zero contribution to the expectation because of the 
independence of the ~'. From Definition 4 we have the identity 

~il+k 
00--~ (")r = ~2 x / ~  c~'i + k (")r  

for i =  1 ..... 4, which together with (3.12) gives for (3.13) 

"I2 { .,0, } 
E{XI}=e~ dOldO2dO3dO4E o),k+lo~k+20~k+30~k+ 4 

Using formula (3.10), we have 

r 
E{X, } = e--~2 dO'dO2dO3dO 4 

xE{yk+Iyk+Z~'k+3yk+4(i~ +~ik+z\l /r (t,'k+3"k+4)tl r 

~<~ El/E{(~,k+ ~,~-+ Z~k+ 3yk +4)2 } 
~2 

x dO'dO2dO3dO4E'/Z{(ik+'i]+2)z "k+3"k+4 2 r  tl )r (3.14) 

We will concentrate now on the estimation of the quantity 

/~k+3~k+4 
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It is useful to rewrite the quantity D in the following form: 

- k+' )~ ,)(t~, +-~- <?, +2>~ ,)>~. D = E { ( t ~  +' (t ,  , , . 

X ( k + 3  k + 3 " ~  ~flk+4 k + 4  2 (tl - ( t l  -r i ( t l  ) c j ) ) c o + D i f f }  

= A + E{Diff} (3.15) 

where Diff is defined by 

1 ~ k + 2 \ 2  " k + 3 " k + 4 ) 2  Dif f= ( i~  + "t "c.o ( t '  t I c,o 

- -  k + l x  )ilk+2 k + 2  - < ( t ~  +' <t, ,~ . , ,  i <t, >~.,)>~,o 

3\ )(tk+4 ,k+, \  ~\2 (3.16) • +~ -< t~  + , r  , - < - ,  . ' r  

We will start by estimating A from (3.15). We use the identity 

(~o e x p [ ( f l ; / x / ~ ) E , =  (0, 1 ,+k ,+k ) 4 , - -  )~, t, ] r (3.17) 
(~~162176 (exp[( f l~ /x /~)E~= l (0,--  1) ~+kt~+k])r 

and the bound 

e x p ( - 4 f l ) ~ e x P L x / ~ = ,  ( 0 ~ - 1 ) ~ ,  t, ~<exp(4fl) (3.18) 

which follows from the simple estimate 

Combining (3.17), (3.18), we have 

A<~c~ fl-~N ~ 111 -i (O,--l)r +k 
a = l  r l  

"" + k  - t I exp (0=-  1)~1 -1 
:==1 ; . I  

In the second factor of the r.h.s, of this inequality we use the hound (3.18), 
while in the first one we use the elementary inequality 

l e " -  I I ~< Ixl e TM 
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and again the bound (3.18). We get 

zl<~E{(tl "l r 

+ c o n s t - E  "k+l "*+2 It~+'l  2 It, I I  (1i~.+31 "k+4 2 - -  - I t ,  I ) r  

- - D l  + D 2  (3.19) 

Given the symmetry  w.r.t, the indexes / ~ > k +  1 of the expectat ion 
E{ ( . ) r  }, we can estimate DI as follows: 

{1 } Dt<~E - ~  ~" ei,,,p,2)2 (li],3].li],)~ x I 1 ( , I  1 

/11 .. . . ,  ~4  

But according to the Schwarz inequality and the relations (3.3) and (3.6), 
which hold also for i]', we have 

N 2 ~ (1i,~31. It l'o,])r <...2 ((i~')2)r ~<2 IIJl[2 ~<const 
113, It4 

Therefore on the basis of Lemma  3.1 

{§ D , ~ < c o n s t - E  ~. ( t , /c.,~ 
,ttl ,,It3 

as N ~ .  
Now let us find an estimate for the first term in the sum over  ct of 

(3.19); the other  terms can be estimated similarly. First of all, using the 
symmetry  of E{ ( - )c .~  } w.r.t, p;, we substitute one term with the sum over 
/~,  /~2, P3, /~4 and then estimate the sum over P3, P4 as we have done for 
the second term by using (3.6) and (3.3). We observe also that we can 

k+~ with ;k+~ in the definition (2.5) of H(z, 0) interchange the factor t t -i 
and the above derivation still holds since this change corresponds to a 
subtraction of a constant  in the Hamil tonian  (2.5). Thus 

,ul 

{' } <~E,/,.{IIjII2} Et/,_ --~ y. (( i~, , )_ , )(( i , , )2)  
I ~ I ,  112 
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Here we have used (3.6) to estimate (1/N)Y. .( i~)  2 and the Schwarz 
inequality in the form 

(I dx dx p f  2, ~pdx =l  

Now since Lemma 3.1 implies that the r.h.s, of the last inequality has zero 
limit as N ~ ~ ,  we have proved that A ~ 0 as N--* ~ .  Let us now consider 
the expression (3.16). It has the form 

E{ A 2 -  B 2} <~ E'/2{ (A - B) 2} E':-{ (A + B) z} 

It is easy to bound the factor E : - { ( A  + B) 2 } by a constant as in the case 
of D~ or D2 in (3.19). Therefore we have to estimate 

ik+31k+4 E { ( A - B )  2 } = E { [ ( i ] + ' i k + - ) ~ .  o ( . ,  ., ) ; . o  

- * + ' ) r  ~ - - ( ( t ~  + '  ( t ,  . \ , / r 1 6 2  

x ((t~ + 3 -  ( t~+3)r  + " -  (tk+4)r162 } 
t )  , <<-E{((t]+')r - ( t ]  + ; . l ) - } ' c ~  

Here we have used once more the symmetry of E { ( - ) } r  w.r.t, p>~k+ 1 
and the bound (3.6) with the estimate (3.3). 

Thus 

E{Diff} <~E~/2{((t]+,) k+, r (t ,  )~.,)2} 

)} d <:, = c  +1~ = const - E ~/'- d2 -~2 r 

where 0(2) is the vector defined as 0 (see Definition 4), but with 0 i (2)=  
1 + 2(0 i -  1) for i =  ! ..... 4, which interpolates between the vectors 0 and 1. 
Using this notation, we obtain the bounds 

4 ]2} 
( t ,  r  

0t=, 

{I2 2 : = E I/2 d2 d2 I 

x Z I ' ' + k ' k + '  " +kik+')r ) - Q  ( t ,  t I )~.o,~1 " l ( t T '  ", . . 
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Now the identity (3.17) and the bound (3.18) imply 

(N~= l  

f:' } 
~<const.E j/'~ ~ = ,  ((i~+k)2)r (( i~+')2)c, ,  (3.20) 

Inserting this inequality in the formula for C, we get 

C~<const-E l/'-~l ~ ( ( i~+~)_ , ) : , ( ( i~+ , )2 ) r  
( N  ~ ' ' 

{ t ~< const .g 1/4 ~ 1 / r  E .I 

~ const E ~/2 1 ((t~)-)~.~ (3.21) 

The inequality (3.21) has been obtained by using repeatedly the symmetry 
of the expectation w.r.t, the indexes /1. By Lemma 3.1 we have that the 
quantity in the r.h.s, of (3.21) goes to zero. Thus Lemma 3.4 is proven. 

In order to finish the proof of Lemma 2.2, we have to establish the 
following result: 

Lemma 3.5: 

N~lim E -N,,=tl ~ ((i,,)2)r ((i") 2) = 0  

ProoL The s.a. of the free energy of the Hopfield model for fixed 
and any value of/3 has been proven in ref. 6 using a martingale technique 161 
analogous to that used in ref. 4. This property and the Bogolubov 
inequali tf  ~5~ imply that 

lim E f HN_, + ~]'t]' --f(HN) = 0  
N ~ Y-, 

(3.22) 

Now we observe that (1/N) Z~=,  ((tu)2)r can be obtained as a linear 
combination of the first derivatives of the free energy with respect to/3, e J.2, 
and e". Since the free energy is s.a., then its derivatives are also self- 
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we get that 

lim E 1 2 ( ( t ) - )~ . ,  
N ~  ~ p = l  

However, we can write 

averaging (s) and we have the s.a. of (I/N) 5~ = j ((t")2) ~.!" From this fact 

1 L ((t , ' )2) } = 0  
- -  N . t ,  = I 

{,. } E -~ y. ((t")'-)~,,--~ ((t")- ')  
p = l  p = l  

~<E ( ( t " ) - ' ) r  " 
~v,,=l (N,,=) " 

+ E ,,: ,  ((t,')-')~., - E  ~7 : ,  

+E~I1 L ( ( t " ,2 ) -E{ l  L ((t",2)}} (3.23, 
[ I N . = l  N, ,=,  

The first and the third terms of (3.23) tend to zero as N ~  oo. In view of 
the above argument the second term in (3.23) also tends to zero because 
(3.22) implies that the two sequences of free energies have a common 
limit. Since the free energies are convex functions and their derivatives 
are continuous for almost every value of the parameters, the limits of the 
derivatives of the two sequences are also equal almost everywhere as a 
consequence of general properties of sequences of convex functions. Let us 
prove now the convergence to zero of 

{, > : ,  >:} E ~ y .  <t,' ~ , , - ~ Z  ( t;  --,o 
It It 

From (3.22) and the above arguments on the derivatives of the free energy 
it follows that 

<,.>21)} 
(3.24) 

The 1.h.s. goes to zero as N ~  oo because it can be obtained as the 
derivative with respect to % of the free energy. Thus we get 

E -~ ( t " ) ~ . , - - ~  (t") 2 ---,0 (3.25) 
P 
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If now we write the analog of the formula (3.23) for ~, ,  ( t~ ' }  2 and use the 
same argument,  we get finally that 

If ( 1 / N ) Z u  (t~')~.l is s.a., L e m m a  3.5 is proven, since this self-averaging 
property will be shown in the proof  of Lemma  2.1. 

Proof of Lemma 2.1: 

(a) m ~', p =  1 ..... p, are s.a. because the free energy is s.a.,  (6) and 
because these quantities can be obtained as derivatives of the free energy 
w.r.t, e" and the derivation conserves the s.a. property,  tS) 

(b) Using again the proper ty  of s.a. of the free energy and its 
derivative w.r.t, e2, we have 

' , i t  

E / 2 (3.26) - {,v 
as N--,  oo. Integrating by parts with respect to y~' in (3.26), we obtain 

2 .,. } 

/ 1 .  V 

- ( t ) ~ . ,  ~ ( ( c ' ) >  2 ~.1 (3.27) 

According to Lemma3.5 ,  ( I /N)}", .  ((t")2)r is s.a., so that  the second 
term in the r.h.s, of (3.27) has zero limit as N--* oo. So from (3.27) we 
obtain, as N--* oo, 
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But by the Schwarz inequality 

f } E -~-~. (t")~., (i~i~)~. I (t")~., 

<~E~/2 -~3~,,, (i~'i~ ~., ~ .... . 

{1 } 
~<c~ ~ - ~ 2  (i~'i';)~., (3.29) 

It ,  v 

Since according to Lemma 3.1 the r.h.s, in the last inequality has zero 
limit as N ~  ~ ,  (3.28) and (3.29) complete the proof of Lemma 3.5 and 
also of Lemmas 2.1 and 2.2. 
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